Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Transl Med ; 16(738): eadi0979, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478629

RESUMO

Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , SARS-CoV-2 , Mutação/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
2.
Front Immunol ; 14: 1135815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969239

RESUMO

Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8+ and CD4+ T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8+ T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8+ T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4+ T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Síndrome Pós-COVID-19 Aguda , Anticorpos Neutralizantes , Epitopos , RNA Mensageiro
4.
Front Chem ; 10: 867928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860632

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of compounds, self-masked aldehyde inhibitors (SMAIs) which are based on the dipeptide aldehyde inhibitor (Cbz-Phe-Phe-CHO, 1), for which the P1 Phe group contains a 1'-hydroxy group, effectively, an o-tyrosinyl aldehyde (Cbz-Phe-o-Tyr-CHO, 2; (Li et al. (2021) J. Med. Chem. 64, 11,267-11,287)). Compound 2 and other SMAIs exist in aqueous mixtures as stable δ-lactols, and apparent catalysis by the cysteine protease cruzain, the major cysteine protease of Trypanosoma cruzi, results in the opening of the lactol ring to afford the aldehydes which then form reversible thiohemiacetals with the enzyme. These SMAIs are also potent, time-dependent inhibitors of human cathepsin L (K i = 11-60 nM), an enzyme which shares 36% amino acid identity with cruzain. As inactivators of cathepsin L have recently been shown to be potent anti-SARS-CoV-2 agents in infected mammalian cells (Mellott et al. (2021) ACS Chem. Biol. 16, 642-650), we evaluated SMAIs in VeroE6 and A549/ACE2 cells infected with SARS-CoV-2. These SMAIs demonstrated potent anti-SARS-CoV-2 activity with values of EC50 = 2-8 µM. We also synthesized pro-drug forms of the SMAIs in which the hydroxyl groups of the lactols were O-acylated. Such pro-drug SMAIs resulted in significantly enhanced anti-SARS-CoV-2 activity (EC50 = 0.3-0.6 µM), demonstrating that the O-acylated-SMAIs afforded a level of stability within infected cells, and are likely converted to SMAIs by the action of cellular esterases. Lastly, we prepared and characterized an SMAI in which the sidechain adjacent to the terminal aldehyde is a 2-pyridonyl-alanine group, a mimic of both phenylalanine and glutamine. This compound (9) inhibited both cathepsin L and 3CL protease at low nanomolar concentrations, and also exerted anti-CoV-2 activity in an infected human cell line.

5.
mBio ; 13(4): e0182222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35900097

RESUMO

The U.S. Food and Drug Administration-authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected in two doses and effective in preventing COVID-19, but they do not induce efficient mucosal immunity or prevent viral transmission. Here, we report the first noninfectious, bacteriophage T4-based, multicomponent, needle- and adjuvant-free, mucosal vaccine harboring engineered Spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of two doses of this T4 SARS-CoV-2 vaccine 21 days apart induced robust mucosal immunity, in addition to strong systemic humoral and cellular immune responses. The intranasal vaccine induced broad virus neutralization antibody titers against multiple variants, Th1-biased cytokine responses, strong CD4+ and CD8+ T cell immunity, and high secretory IgA titers in sera and bronchoalveolar lavage specimens from vaccinated mice. All of these responses were much stronger in intranasally vaccinated mice than those induced by the injected vaccine. Furthermore, the nasal vaccine provided complete protection and sterilizing immunity against the mouse-adapted SARS-CoV-2 MA10 strain, the ancestral WA-1/2020 strain, and the most lethal Delta variant in both BALB/c and human angiotensin converting enzyme (hACE2) knock-in transgenic mouse models. In addition, the vaccine elicited virus-neutralizing antibodies against SARS-CoV-2 variants in bronchoalveolar lavage specimens, did not affect the gut microbiota, exhibited minimal lung lesions in vaccinated and challenged mice, and is completely stable at ambient temperature. This modular, needle-free, phage T4 mucosal vaccine delivery platform is therefore an excellent candidate for designing efficacious mucosal vaccines against other respiratory infections and for emergency preparedness against emerging epidemic and pandemic pathogens. IMPORTANCE According to the World Health Organization, COVID-19 may have caused ~15-million deaths across the globe and is still ravaging the world. Another wave of ~100 million infections is predicted in the United States due to the emergence of highly transmissible immune-escaped Omicron variants. The authorized vaccines would not prevent these transmissions since they do not trigger mucosal immunity. We circumvented this limitation by developing a needle-free, bacteriophage T4-based, mucosal vaccine. This intranasally administered vaccine generates superior mucosal immunity in mice, in addition to inducing robust humoral and cell-mediated immune responses, and provides complete protection and sterilizing immunity against SARS-CoV-2 variants. The vaccine is stable, adjuvant-free, and cost-effectively manufactured and distributed, making it a strategically important next-generation COVID vaccine for ending this pandemic.


Assuntos
Bacteriófagos , COVID-19 , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
6.
Cell Rep ; 39(11): 110954, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671758

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Linhagem Celular , Humanos , Estabilidade de RNA , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
7.
bioRxiv ; 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35313595

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

8.
Cell Discov ; 8(1): 16, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169121

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising tolerance to mutations adjacent to or within its interaction epitope. Cryo-electron microscopy structure showed that 2G1 bound to the tip of receptor binding domain (RBD) of spike protein with small contact interface but strong hydrophobic effect, which resulted in nanomolar to sub-nanomolar affinities to spike proteins. The epitope of 2G1 on RBD partially overlaps with angiotensin converting enzyme 2 (ACE2) interface, which enables 2G1 to block interaction between RBD and ACE2. The narrow binding epitope but high affinity bestow outstanding therapeutic efficacy upon 2G1 that neutralized VOCs with sub-nanomolar half maximal inhibitory concentration in vitro. In SARS-CoV-2, Beta or Delta variant-challenged transgenic mice and rhesus macaque models, 2G1 protected animals from clinical illness and eliminated viral burden, without serious impact to animal safety. Mutagenesis experiments suggest that 2G1 is potentially capable of dealing with emerging SARS-CoV-2 variants in the future. This report characterized the therapeutic antibodies specific to the tip of spike against SARS-CoV-2 variants and highlights the potential clinical applications as well as for developing vaccine and cocktail therapy.

9.
J Hazard Mater ; 429: 127709, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35086724

RESUMO

Dry heat decontamination has been shown to effectively inactivate viruses without compromising the integrity of delicate personal protective equipment (PPE), allowing safe reuse and helping to alleviate shortages of PPE that have arisen due to COVID-19. Unfortunately, current thermal decontamination guidelines rely on empirical data which are often sparse, limited to a specific virus, and unable to provide fundamental insight into the underlying inactivation reaction. In this work, we experimentally quantified dry heat decontamination of SARS-CoV-2 on disposable masks and validated a model that treats the inactivation reaction as thermal degradation of macromolecules. Furthermore, upon nondimensionalization, all of the experimental data collapse onto a unified curve, revealing that the thermally driven decontamination process exhibits self-similar behavior. Our results show that heating surgical masks to 70 °C for 5 min inactivates over 99.9% of SARS-CoV-2. We also characterized the chemical and physical properties of disposable masks after heat treatment and did not observe degradation. The model presented in this work enables extrapolation of results beyond specific temperatures to provide guidelines for safe PPE decontamination. The modeling framework and self-similar behavior are expected to extend to most viruses-including yet-unencountered novel viruses-while accounting for a range of environmental conditions.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Temperatura Alta , Humanos , Equipamento de Proteção Individual
10.
Sci Adv ; 7(37): eabh1547, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516878

RESUMO

A "universal" platform that can rapidly generate multiplex vaccine candidates is critically needed to control pandemics. Using the severe acute respiratory syndrome coronavirus 2 as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates was engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers was found to be the most potent vaccine candidate in animal models. Without any adjuvant, this vaccine stimulated robust immune responses, both T helper cell 1 (TH1) and TH2 immunoglobulin G subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new nanovaccine design framework might allow the rapid deployment of effective adjuvant-free phage-based vaccines against any emerging pathogen in the future.

11.
PLoS Pathog ; 17(9): e1009897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492082

RESUMO

The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Nanopartículas/uso terapêutico , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Células HEK293 , Humanos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia
12.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288674

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Assuntos
Aldeídos/química , Tratamento Farmacológico da COVID-19 , Doença de Chagas/tratamento farmacológico , Inibidores de Cisteína Proteinase/uso terapêutico , SARS-CoV-2/enzimologia , Trypanosoma cruzi/enzimologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
14.
PLoS One ; 16(6): e0253487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161386

RESUMO

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , COVID-19/terapia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/metabolismo , COVID-19/imunologia , COVID-19/virologia , Quimiocinas/sangue , Quimiocinas/genética , Chlorocebus aethiops , Convalescença , Cricetinae , Citocinas/sangue , Citocinas/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Macaca mulatta , Masculino , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Carga Viral
15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33597253

RESUMO

Guided by a computational docking analysis, about 30 Food and Drug Administration/European Medicines Agency (FDA/EMA)-approved small-molecule medicines were characterized on their inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Of these small molecules tested, six displayed a concentration that inhibits response by 50% (IC50) value below 100 µM in inhibiting Mpro, and, importantly, three, that is, pimozide, ebastine, and bepridil, are basic molecules that potentiate dual functions by both raising endosomal pH to interfere with SARS-CoV-2 entry into the human cell host and inhibiting Mpro in infected cells. A live virus-based modified microneutralization assay revealed that bepridil possesses significant anti-SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration, 50% (EC50) values. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.


Assuntos
Antivirais/farmacologia , Bepridil/farmacologia , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Chlorocebus aethiops , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas , Células Vero
16.
bioRxiv ; 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33501450

RESUMO

A "universal" vaccine design platform that can rapidly generate multiplex vaccine candidates is critically needed to control future pandemics. Here, using SARS-CoV-2 pandemic virus as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates were engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include: expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers is found to be the most potent vaccine candidate in mouse and rabbit models. Without any adjuvant, this vaccine stimulated robust immune responses, both T H 1 and T H 2 IgG subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new type of nanovaccine design framework might allow rapid deployment of effective phage-based vaccines against any emerging pathogen in the future.

17.
Viruses ; 14(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35062273

RESUMO

We report the discovery of several highly potent small molecules with low-nM potency against severe acute respiratory syndrome coronavirus (SARS-CoV; lowest half-maximal inhibitory concentration (IC50: 13 nM), SARS-CoV-2 (IC50: 23 nM), and Middle East respiratory syndrome coronavirus (MERS-CoV; IC50: 76 nM) in pseudovirus-based assays with excellent selectivity index (SI) values (>5000), demonstrating potential pan-coronavirus inhibitory activities. Some compounds showed 100% inhibition against the cytopathic effects (CPE; IC100) of an authentic SARS-CoV-2 (US_WA-1/2020) variant at 1.25 µM. The most active inhibitors also potently inhibited variants of concern (VOCs), including the UK (B.1.1.7) and South African (B.1.351) variants and the Delta variant (B.1.617.2) originally identified in India in pseudovirus-based assay. Surface plasmon resonance (SPR) analysis with one potent inhibitor confirmed that it binds to the prefusion SARS-CoV-2 spike protein trimer. These small-molecule inhibitors prevented virus-mediated cell-cell fusion. The absorption, distribution, metabolism, and excretion (ADME) data for one of the most active inhibitors, NBCoV1, demonstrated drug-like properties. An in vivo pharmacokinetics (PK) study of NBCoV1 in rats demonstrated an excellent half-life (t1/2) of 11.3 h, a mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect these lead inhibitors to facilitate the further development of preclinical and clinical candidates.


Assuntos
Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacocinética , Inibidores da Fusão de HIV/farmacologia , Humanos , Ligação Proteica , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
18.
ChemMedChem ; 16(6): 942-948, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33283984

RESUMO

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain ß-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 µM and A549/ACE2 cells at 0.16-0.31 µM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cisteína/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Pirrolidinonas/síntese química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , SARS-CoV-2/enzimologia , Células Vero
19.
mBio ; 11(6)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310780

RESUMO

SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as the primary receptor to enter host cells and initiate the infection. The critical binding region of ACE2 is an ∼30-amino-acid (aa)-long helix. Here, we report the design of four stapled peptides based on the ACE2 helix, which is expected to bind to SARS-CoV-2 and prevent the binding of the virus to the ACE2 receptor and disrupt the infection. All stapled peptides showed high helical contents (50 to 94% helicity). In contrast, the linear control peptide NYBSP-C showed no helicity (19%). We have evaluated the peptides in a pseudovirus-based single-cycle assay in HT1080/ACE2 cells and human lung cell line A549/ACE2, overexpressing ACE2. Three of the four stapled peptides showed potent antiviral activity in HT1080/ACE2 (50% inhibitory concentration [IC50]: 1.9 to 4.1 µM) and A549/ACE2 (IC50: 2.2 to 2.8 µM) cells. The linear peptide NYBSP-C and the double-stapled peptide StRIP16, used as controls, showed no antiviral activity. Most significantly, none of the stapled peptides show any cytotoxicity at the highest dose tested. We also evaluated the antiviral activity of the peptides by infecting Vero E6 cells with the replication-competent authentic SARS-CoV-2 (US_WA-1/2020). NYBSP-1 was the most efficient, preventing the complete formation of cytopathic effects (CPEs) at an IC100 of 17.2 µM. NYBSP-2 and NYBSP-4 also prevented the formation of the virus-induced CPE with an IC100 of about 33 µM. We determined the proteolytic stability of one of the most active stapled peptides, NYBSP-4, in human plasma, which showed a half-life (T1/2) of >289 min.IMPORTANCE SARS-CoV-2 is a novel virus with many unknowns. No vaccine or specific therapy is available yet to prevent and treat this deadly virus. Therefore, there is an urgent need to develop novel therapeutics. Structural studies revealed critical interactions between the binding site helix of the ACE2 receptor and SARS-CoV-2 receptor-binding domain (RBD). Therefore, targeting the entry pathway of SARS-CoV-2 is ideal for both prevention and treatment as it blocks the first step of the viral life cycle. We report the design of four double-stapled peptides, three of which showed potent antiviral activity in HT1080/ACE2 cells and human lung carcinoma cells, A549/ACE2. Most significantly, the active stapled peptides with antiviral activity against SARS-CoV-2 showed high α-helicity (60 to 94%). The most active stapled peptide, NYBSP-4, showed substantial resistance to degradation by proteolytic enzymes in human plasma. The lead stapled peptides are expected to pave the way for further optimization of a clinical candidate.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Ligação Viral/efeitos dos fármacos , Células A549 , Animais , Sítios de Ligação , Chlorocebus aethiops , Humanos , Concentração Inibidora 50 , Peptídeos/síntese química , Ligação Proteica , Células Vero
20.
Proc Natl Acad Sci U S A ; 117(47): 29832-29838, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139569

RESUMO

Effective therapies are urgently needed for the SARS-CoV-2/COVID-19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from large phage-displayed Fab, scFv, and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. A high-affinity Fab was selected from one of the libraries and converted to a full-size antibody, IgG1 ab1, which competed with human ACE2 for binding to RBD. It potently neutralized replication-competent SARS-CoV-2 but not SARS-CoV, as measured by two different tissue culture assays, as well as a replication-competent mouse ACE2-adapted SARS-CoV-2 in BALB/c mice and native virus in hACE2-expressing transgenic mice showing activity at the lowest tested dose of 2 mg/kg. IgG1 ab1 also exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection. The mechanism of neutralization is by competition with ACE2 but could involve antibody-dependent cellular cytotoxicity (ADCC) as IgG1 ab1 had ADCC activity in vitro. The ab1 sequence has a relatively low number of somatic mutations, indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 did not aggregate, did not exhibit other developability liabilities, and did not bind to any of the 5,300 human membrane-associated proteins tested. These results suggest that IgG1 ab1 has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 d of availability of antigen for panning) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.


Assuntos
Teste Sorológico para COVID-19/métodos , Vacinas contra COVID-19/imunologia , COVID-19/terapia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Teste Sorológico para COVID-19/normas , Vacinas contra COVID-19/normas , Chlorocebus aethiops , Cricetinae , Feminino , Humanos , Imunização Passiva/métodos , Imunização Passiva/normas , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...